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Human subjects indicated their preference between a hypothetical $1,000 reward available with various
probabilities or delays and a certain reward of variable amount available immediately. The function
relating the amount of the certain-immediate reward subjectively equivalent to the delayed $1,000
reward had the same general shape (hyperbolic) as the function found by Mazur (1987) to describe
pigeons’ delay discounting. The function relating the certain-immediate amount of money subjectively
equivalent to the probabilistic $1,000 reward was also hyperbolic, provided that the stated probability
was transformed to odds against winning. In a second experiment, when human subjects chose between
a delayed $1,000 reward and a probabilistic $1,000 reward, delay was proportional to the same odds-
against transformation of the probability to which it was subjectively equivalent.
Key words: choice, delay, probability, discounting, humans

The idea that people behave similarly in the
face of probability and delay was first proposed
by Rotter (1954) and tested by Mischel (1966)
in the context of “delay of gratification.” Ac-
cording to Rotter, people choose a smaller more
immediate reward over a larger but delayed
reward because, in the local culture, promises
of delayed reward are rarely given or, if given,
broken. In other words, delays of gratification
act like less-than-unity probabilities; longer
delays correspond to lower probabilities.

The present studies investigated the relation
between subjective probability and delay with
human subjects. In a series of psychophysical
tasks, we first attempted to establish separate
delay and probability discount functions. A
second experiment related subjective delay to
probability of outcome. The word subjective is
used here to refer to the reward judged by the
subject to be equivalent in value to a reward
stated by the experimenter. Subjective there-
fore refers to a response or a judgment of the
subject and not necessarily to any part of (or
representation within) the subject.
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Hypothetical rewards in human operant re-
search. In everyday speech the word imagi-
nation refers to the creation of an image or
picture in the mind. Modern cognitive psy-
chologists have adopted this use to refer to
internal representations of aspects of the en-
vironment. But an act of imagination also can
have a behavioral meaning. A person success-
fully imagining a lion might show signs of
panic (running away or crying out in alarm)
rather than introspection or self-contemplation
(closing his eyes, nodding his head and saying,
“Ah, I seeit,” in a calm voice). Mischel, Shoda,
and Rodriguez (1989) found that children who
were instructed to imagine an exposed food
reward as an inedible object (a pretzel as a
log, for instance) waited longer for a larger
food reward than did uninstructed children.
However, even without specific instructions,
many children “talked quietly to themselves,
sang, created games with their hands and feet,
and even tried to go to sleep during the waiting
time” (p. 935). These children were imagining
the absence of the small reward (in the be-
havioral sense of the term); that is, they were
behaving as they would have behaved had it
not been present. Instructions are, in operant
terms, discriminative stimuli for complex be-
havioral patterns (Hayes, Brownstein, Haas,
& Greenway, 1986). The effective proposition
of any instruction must, in the past, have been
a discriminative stimulus for real contingen-
cies. The qualifiers “as if,” “imagine,” or “hy-
pothetical” make the instructions discrimina-
tive stimuli for acts of imagination.

It is reasonable to suppose that the ability
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to imagine is an essential ingredient of a per-
son’s self-control, an ability that develops with
age. In the experiments to be reported here,
adult human subjects were asked to imagine
choosing between significant amounts of money
discounted by various delays and probabilities.
The experimental procedures were borrowed
from psychophysical methods previously found
to generate replicable, functional relation-
ships. Whether the subjects in these experi-
ments were successful in imagining the choice
alternatives may be judged by comparing their
behavior to that of nonhumans choosing be-
tween significant rewards (as in typical op-
erant choice procedures) as well as to the be-
havior of humans choosing in the laboratory
between (necessarily) nonmeaningful rewards
(the catch-22 of human laboratory research is
that the more relevant a motivational variable
is to everyday human life, the less ethically
justifiable is the manipulation of that variable
in the laboratory). In any case, the imagination
of the human subjects in the present experi-
ments (and, in general, in experiments in hu-
man decision) is both internally coherent, in
the sense that the results of one experiment
may be predicted from another, and externally
valid, that is, consistent with the behavior of
nonhumans choosing among real rewards in
corresponding situations.

EXPERIMENT I

Kahneman and Tversky’s (1979) prospect
theory suggests the following general form for
probability discount functions:

=f)v (1

where v, is the discounted value of a proba-
bilistic reward, f(p) is a function of the prob-
ability of the reward, and V is the undis-
counted value of the reward. According to
subjective expected utility theory, the standard
normative theory of probabilistic choice, f(p)
= p. (Consequently, v, = pV where pV is the
expected value of the reward.) Many studies
of probabilistic choice have disconfirmed the
normative theory. For instance, Allais (1953)
discovered that preference between a pair of
probabilistic alternatives (v,; > v,,) may re-
verse when both alternatives are made con-
ditional on a third probabilistic event (g). (It
is not possible that v,; > v,, and gv,, < qv,,.)
To explain Allais’ paradox as well as several
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other nonnormative findings in human deci-
sion experiments, Kahneman and Tversky’s
prospect theory proposes that f(p) in Equation
1 is a complex but unspecified function of p
with the following properties: f(0) = 0; f(1) =
1; over most of the range of p, f(p) < p; for
very low but nonzero values of p, f(p) > p;
the proposed function is discontinuous at the
endpoints (p = 0, p = 1) but continuous oth-
erwise.

Just as the standard normative theory of
probabilistic discounting predicts consistency
of preference whenever two probabilistic al-
ternatives are further discounted by the same
probability (¢ in the above example), so the
standard normative theory of delay discount-
ing predicts consistency of preference when-
ever two delayed alternatives are further dis-
counted by the same delay (Benzion, Rapoport,
& Yagil, 1989). This is why the interest paid
by savings banks usually accumulates expo-
nentially (i.e., by continuous compounding). A
sum of $100 earns the same interest over a
fixed future period regardless of whether it is
newly deposited or has accumulated to that
amount from previous deposits. Suppose you
deposited $100 in Bank A now and in 5 years
it had grown to $250. If you left the $250 on
deposit and deposited $200 in Bank B which
paid the same exponential interest rate as Bank
A there would be no time, no matter how long,
where the values of the two deposits would
reverse.

If, however, your money grew hyperboli-
cally, the values would reverse. Rearranging a
hyperbolic discount function (Equation 2a, be-
low) to calculate growth (as opposed to decay),
we can solve for the growth of an initial deposit
v to a value V in d years. Suppose, on January
1, 2000, you deposit $100 in a hyperbolic bank
(d, = 0, V, = v; = $100). Five years later
(January 1, 2005) d; = 5 and by hypothesis
V, = $250. Solving Equation 2a, £ must have
been 0.3. At this point another deposit (v, =
$200) is made at the same (hyperbolic) bank
(¢ = 0.3); on January 1, 2005, therefore, d, =
0 and V, = v, = $200; now V, < V. Another
10 years pass; it is January 1, 2015. At this
point d; = 15 and v, = $100; d, = 10 and v,
= $200. Solving Equation 2a again, V;, = $550
but ¥V, = $800; now V, > V,. The values
reverse because, according to Equation 2a, du-
ration (d) acts multiplicatively on the initial
deposit (v). As the years pass, any differences
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in time of deposit are diminished in importance
relative to differences in the amount of the
initial deposit. Exponential growth, on the
other hand, describes compound interest. In-
terest is calculated for each period based on
the amount accumulated at the start of the
period, not on the initial deposit. Therefore,
with exponential growth, values can never re-
verse. Hence, deviations from exponential dis-
count functions (e.g., towards hyperbolic dis-
count functions) are often considered by
economists to be “irrational” (Strotz, 1956).

There is indirect evidence (Ainslie, 1974;
Logue, 1988; Rachlin & Green, 1972) with
nonhuman and human subjects that subjective
delay discount functions do indeed deviate from
the exponential form. For instance, a pigeon
might choose two pellets of food delayed by 14
s over one pellet delayed by 10 s (both alter-
natives fixed in time) but reverse its preference
after 10 s has passed, choosing one pellet im-
mediately over two pellets delayed by 4 s. This
sort of preference reversal is predicted by hy-
perbolic discount functions but not by expo-
nential ones.

On the basis of a series of experiments with
pigeons as subjects, Mazur (1987) found direct
evidence that pigeon’s delay discount functions
are not exponential but are hyperbolic. Mazur
suggested the following hyperbolic delay dis-
count function:

vg=gd)V (2)
v
“T 1+ kd (22)

where v, is the discounted value of a delayed
reward, d is delay between choice and reward,
and k is a constant proportional to degree of
discounting.

Rachlin, Logue, Gibbon, and Frankel (1986)
noted that, with repeated probabilistic events,
the average delay to an outcome is related to
the probability of that outcome by the follow-
ing waiting-time function:

t+ ¢
p

where d is the average waiting time between
choice (the beginning of the first trial) and a
repeated probabilistic event, p is the proba-
bility of the event, ¢ is the intertrial interval,
and c is the trial duration. If ¢ is small relative
to ¢,

d=

—t 3)
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d=(t/p) — t=1t[(1/p) — 1] =10 (3a)

where ® = (1/p) — 1 or “odds against.” (For
instance, the odds against a gamble with a
probability of .1 paying off are 9:1.) With
repeated gambles, odds against is the average
number of losses expected before a win. As
Skinner (1953) noted, the pattern of bets and
wins in repeated gambles is the same as that
of responses and reinforcers in a variable-ratio
(VR) schedule. If the net gain or loss from a
string of losses followed by a win were sub-
jectively discounted (according to Equation 2a)
by the string’s duration, repeated gambles of
zero or negative net expected value (expected
gain minus cost of bet) could take on a positive
subjective value (Rachlin, 1990). Temporal
discounting (exponential as well as hyperbolic)
may thus account for people’s tendency to gam-
ble even in games of negative expected value.

Rachlin et al. (1986) showed that substi-
tution of Equation 3 or 3a into Equation 2a
results in a probability discount function with
most of the properties specified by prospect
theory. The present experiment attempted to
obtain separate probability and delay discount
functions with human subjects to determine
whether such a substitution is empirically jus-
tified (i.e., can anticipated delay and stated
probability be interchanged in this way?). Two
equations were tested as descriptions of the
delay discount function. The hyperbolic func-
tion of Equation 2a was selected because it
describes delay discounting of nonhumans
(Mazur, 1987). An exponential discount func-
tion was also tested because exponential func-
tions have been traditionally considered nor-
mative models for delay discounting (Strotz,
1956):

vy = Ve, 4)

Figure 1 illustrates the differing shapes of the
functions of Equations 2a and 4 with different
values of £ and a unit reward (JV = 1.0). As
the parameter £ in Equations 2a and 4 in-
creases from zero, the discount curve increases
in steepness.

Analogous equations were tested as descrip-
tions of the probability discount function. A
hyperbolic discount function for probabilistic
outcomes is:

vV oV
1+h0 p+h(1l—p)

5
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Fig. 1. Two possible delay discount functions (adapted from Mazur, 1987) with different parameter values.

where ® = (1/p) — 1. The corresponding ex-
ponential function for probabilistic discount-
ing is:

v, = Ve"e, 6)
Figure 2 illustrates the differing shapes of the

functions of Equations 5 and 6 with different
values of #0. When A = 1, Equation 5 predicts
that probabilistic outcomes will be discounted
according to their expected values (expected
value = pV). When 4 > 1, Equation 5 predicts
overdiscounting of probabilistic outcomes (rel-
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Fig. 2. Two possible probability discount functions with different parameter values.
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ative to expected value), generating a function
similar (over most of its range) to the one pro-
posed by Kahneman and Tversky (1979).
When 4 < 1, Equation 5 predicts underdis-
counting of probabilistic outcomes.

METHOD
Subjects

Eighty students enrolled in an undergrad-
uate psychology course at the State University
of New York at Stony Brook served as subjects.
Their participation in this experiment was a
course requirement. Forty of the subjects were
used to obtain a probability discount function,
and 40 were used to obtain a delay discount
function.

Materials

Each subject was tested individually in a
small room containing two chairs and a table.
Cards were presented in pairs to all subjects.
One card stated an amount of money to be
paid for sure ($1,000, $990, $980, $960, $940,
$920, $900, $850, $800, $750, $700, $650,
$600, $550, $500, $450, $400, $350, $300,
$250, $200, $150, $100, $80, $60, $40, $20,
$10, $5, or $1). For subjects in the probability
discount group, the other card stated a prob-
ability of $1,000 as a percentage (95%, 90%,
70%, 50%, 30%, 10%, and 5% chances of win-
ning $1,000), whereas for subjects in the delay
discount group, the other card stated a delay
of $1,000 (1 month, 6 months, 1 year, 5 years,
10 years, 25 years, and 50 years).

Procedure

Subjects in both probability and delay dis-
count groups were asked to state a preference
between the two cards. The probabilistic or
delayed $1,000 card remained in front of the
subject while the certain-immediate cards were
presented one by one next to it. Subjects in-
dicated their preference by pointing to one of
the cards.

The order in which both probabilistic $1,000
and delayed $1,000 cards were presented was
from highest valued to lowest valued. Thus,
the highest probabilities and lowest delays were
tested first. For each probability or delay, the
set of certain-immediate amounts was titrated
up and then down for 20 subjects and down
and then up for the other 20. A subject was
considered to have switched to the initially dis-
preferred alternative after two choices in a row
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Fig. 3. Distributions of individual certain-immediate
amounts equivalent to $1,000 with various probabilities.

of that alternative. Points of equivalence were
obtained by averaging the amounts just before
and just after the switch.

The following instructions were read to all
subjects in the probability discount groups:

The purpose of this experiment is to compare
your preferences for different amounts of money.

In this experiment you will be asked to make
a series of hypothetical decisions between mon-
etary alternatives. The experimenter will pre-
sent two sets of cards to you. The cards on your
left will offer you an amount of money that
will vary, but will always be given to you for
sure. On the cards on your right the amount
of money will be $1,000, but its payment will
be uncertain. That is, there will be a specified
chance that you get the $1,000. The chance of
winning the $1,000 will be written as a per-
centage. Please ask the experimenter to show
you an example of both sets of cards and clarify
any questions you might have.

You must always choose one of the two cards
by pointing to it with your hand.

Thanks for your cooperation.

RESULTS AND DiscuUssION

Figure 3 shows, for all 40 subjects (pooled),
distributions of amounts of money, available
with certainty, between which, and $1,000
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Fig. 4. Amount of certain-immediate money equiva-
lent to $1,000 with various probabilities. The crosses are
at the medians of individual subjects’ points of indifference.
Perpendicular bars (and small squares) represent inter-
quartile ranges. The solid line is the best fitting hyperbolic
function of odds against. The segmented line is the best
fitting exponential function. The dotted line represents the
expected value of $1,000.

available with the probability shown on the
ordinate, subjects were indifferent. The dis-
tributions were highly skewed at the extremes
but nearly normal at p = .5. Skewedness ranged
from —1.46 at p = .95 to +1.48 at p = .05,
with a minimum absolute value (+0.27) at p
= .5. Kurtosis (a measure of peakedness) was
also minimal at p = .5. Both the skewedness
and kurtosis of these distributions can be ex-
plained by the limits imposed on the subjects’
choices. An amount of money with a very high
probability can never be worth more than the
amount itself, and an amount with a very low
probability can never be worth less than zero.

Figure 4 shows the medians and the inter-
quartile ranges of the certain amounts of money
subjectively equivalent to the probabilistic
$1,000. The solid line in Figure 4 represents
the hyperbolic equation:

_ 1,000  1,000p
%»"T+160 16-06
The solid line corresponds generally to the
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hypothetical function drawn by Kahneman and
Tversky (1979) to explain apparent anomalies
of human decision. Recall Allais’ (1953) par-
adox that, with two probabilistic alternatives,
further discounting of both alternatives by the
same probability (¢) may reverse subjective
preferences. If f(p) = p in Equation 1, such a
reversal is impossible. But if f(p) is as given
by Equation 7, a reversal may occur. For in-
stance, in Equation 7, the $1,000 reward with
p = 1 is worth $1,000, but a $2,500 reward
(substituting 2,500 for 1,000) with p = .5 would
be worth only $962 (reflecting the commonly
found “risk aversion”). Reducing both re-
wards by ¢ = .1, the $1,000 reward would,
according to Equation 7, be worth $65, whereas
the $2,500 reward (p = .05) would be worth
$80. Thus the hyperbolic probability discount
function of Equation 7 resolves Allais’ paradox
and predicts preference reversals among prob-
abilistic rewards just as the hyperbolic delay
discount function of Equation 2a predicts pref-
erence reversals among delayed rewards.

The percentage of variance (r?) explained
by Equation 7 is .996 with a slope between
predicted and obtained values of .987. For
individual subjects, the median 72 was .970
and the median slope was .963. Examples of
some of the best individual fits are shown in
Figure 5.

The dotted line of Figure 4 represents the
expected value of the probabilistic alternative.
Clearly the subjects’ choices in this experiment
deviated from this “rational” expectation. The
segmented line of Figure 4 is the best fitting
exponential function. The data also deviate
from the exponential function. The best fitting
exponential function tends to underdiscount
the value of high-probability outcomes and to
overdiscount the value of low-probability out-
comes.

Figure 6 shows distributions of the amounts
of money, available immediately, between
which, and $1,000 available with delay shown
on the ordinate, subjects were indifferent.
There is a systematic pattern of deviations from
normality in these distributions analogous to
the one observed in the distributions for the
probabilistic outcomes (Figure 3). Skewedness
ranged from —2.04 at the 1-month delay to
+0.92 at the 600-month delay, with a mini-
mum absolute value of +0.13 at the 120-month
delay. The minimum kurtosis (+0.17) ap-
peared at the 12-month delay. Again, the lim-
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itations of the dependent variable (between
$1,000 and zero) constrained the distributions.

Figure 7 shows the medians and the inter-
quartile ranges of the amounts of money con-
sidered by the subjects to be equivalent to the
delayed $1,000. The solid line in Figure 7
represents the following hyperbolic function:

1,000

%= 1+ 0.014d ®)

The percentage of variance (?) explained by
Equation 8 is .995 with a slope of .953. For
individual subjects, the median 72 was .977

Examples of some of the best fits of Equation 5 to individual probability discounts.

and the median slope was .993. Examples of
some of the best individual fits are shown in
Figure 8.

The segmented line in Figure 7 is the best
fitting exponential function. As with proba-
bilistic discounting, the exponential model tends
to underdiscount the value of less delayed out-
comes and to overdiscount the value of the
more delayed outcomes when compared with
the observed medians and the hyperbolic func-
tion.

The corresponding form of Equations 7 and
8 implies that odds against in probabilistic dis-
counting acts like delay in delay discounting
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Fig. 6. Distributions of individual certain-immediate
amounts equivalent to $1,000 with various delays.

and tends to confirm the speculation of Rachlin
et al. (1986) that stated probability and stated
delay have corresponding effects on behavior.
As a further test of this speculation, another
experiment was performed to find points of
indifference between a probabilistic reward on
the one hand and a delayed reward of equal
amount on the other hand rather than (as in
Experiment I) between a probabilistic or de-
layed reward on the one hand and an imme-
diate-certain reward of varying amount on the
other.

EXPERIMENT II

Setting the delay discount function given by
Equation 2a equal to the probability discount
function given by Equation 5 produces:

Up = V4
v __V
1+h0 1+ kd
d=(h/k)® ©))

In the present experiment subjects chose be-
tween certain but delayed rewards and prob-
abilistic but immediate rewards. If the prob-
ability and delay discount functions do indeed
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Fig. 7. Amount of certain-immediate money equiva-

lent to $1,000 with various delays. The crosses are medians
of individual subjects’ points of indifference. Perpendicular
bars (and small squares) represent interquartile ranges.
The solid line is the best fitting hyperbolic function of
delay. The segmented line is the best fitting exponential
function.

have the same form, Equation 9 should hold
and a simple proportionality should be found
between values of odds against (8) and delay
that produce equivalent discounts of a $1,000
reward.

METHOD
Subjects

Forty students enrolled in an undergraduate
psychology course at the State University of
New York at Stony Brook served as subjects.
Their participation was a course requirement.

Materials

Two sets of cards were presented in pairs
to the subjects. One set of cards offered the
subjects a probabilistic $1,000. The probabil-
ities (again represented as percentages) were
the same as those used in Experiment I. The
other set of cards presented $1,000 to be ob-
tained after a delay. The delay values used
were 1 week, 1 month, 6 months, 1 year, 5
years, 10 years, 17 years, 25 years, 50 years,
and 100 years.
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Fig. 8. Examples of some of the best fits of Equation 2a to individual delay discounts.

Procedure

The procedure was similar to that of Ex-
periment I. Subjects were asked to state their
preference between a card that represented a
risky $1,000 versus a delayed $1,000. The
probabilities were tested in descending order.
With each probabilistic $1,000, 20 subjects
were exposed first to a descending and then
an ascending series of delays (20 to the reverse)
until a delay was found equivalent to the prob-
ability.

Instructions were analogous to those in Ex-
periment I.

RESULTS AND DISCUSSION

Again distribution shapes (not shown for
this experiment) reflect procedural constraints.
At high probabilities, equivalent delays were
constrained at zero and distributions are there-
fore skewed (at p = .95, skewedness = 3.46),
but at low probabilities delays were relatively
unconstrained (up to 100 years) and distri-
butions tended to be more nearly normal (at
p = .05, skewedness = 0.75).

Figure 9 shows the median equivalent delay
(and interquartile ranges) as a function of
probability. The dotted curve represents the
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Fig. 9. Delay of $1,000 equivalent to $1,000 with

various probabilities. The crosses are medians of individ-
ual subjects’ points of indifference. Perpendicular bars
represent interquartile ranges. The dotted line represents
Equation 9 using parameter values obtained from Exper-
iment I. The solid line is the best fitting linear function
of odds against.

values predicted by Equation 9 with con-
straints 4 and £ as obtained in Experiment I
(h = 1.6; £ = 0.014). The difference may be
due to individual differences among subjects
of the two experiments. More likely the dis-
crepancy is due to procedural differences. In
the two parts of Experiment I, probability and
delay were both independent variables. In Ex-
periment II, probability was the independent
variable and delay was adjusted. Other ex-
periments in which probability was adjusted
(not reported here) resulted in a similar func-
tional form that differed in the values of the
constant.

The solid line of Figure 9 plots Equation 9
with the best fitting constant of proportionality
(h/k = 35.3). Figure 10 is a log-log plot of
delay versus odds against. Equation 9 predicts
that the points on such a plot should form a
straight line with a slope of 1.0. The percent-
age of variance explained by Equation 9 is
.961 with a slope of .988. For individual sub-
jects, the median 72 was .868 and the median
slope was .870.

An experiment corresponding to the present
Experiment II was performed by Mazur (1987,

HOWARD RACHLIN et al.

LOG EQUIVALENT DELAY

10000 g
1000 £
1005
10E
1E + + MEDIAN
E e PREDICTED EXP 1
C — BESTFIT
0.1 L1onn 11 11 111 L1 1111
0.01 0.1 1 10 100

LOG ODDS AGAINST

Fig. 10. Same data as Figure 9, now with the natural
log of odds against rather than probability as the abscissa.
Again, the dotted line represents Equation 9 using pa-
rameter values obtained from Experiment I, and the solid
line is the best fitting linear function of odds against.

Experiment 3) with pigeons that pecked keys
to choose between a delayed but certain reward
(2-s access to food) and an immediate but prob-
abilistic reward of the same amount. As in the
present experiment, delay was titrated up and
down until a delay was found equivalent to a
given probability. Unfortunately (for our pur-
poses) only 4 subjects were tested with only
five probabilities each (none greater than .5).
Nevertheless, Equation 9 describes the results.
The difference between Mazur’s and the pres-
ent results is mainly one of scale. In the present
experiment, for instance, people said they were
indifferent between $1,000 with a probability
of .5 and that same sum for sure delayed by
about 5 years. In Mazur’s experiment, pigeons
were indifferent between a 2-s access to mixed
gain delivered with a probability of .5 and that
same reward delayed by about 1 s.
Comparing Equation 9 with Equation 3a,
the constant 4 /k occupies the place of the con-
stant ¢, the interval between repeated proba-
bilistic trials resulting in an expected waiting
time d between the first trial and a positive
outcome. With repeated probabilistic trials
there is some debate whether variation of in-
tertrial interval affects choice as Equation 3a
predicts (Rachlin et al., 1986; Silberberg,
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Murray, Christiansen, & Asano, 1988). With
nonrepeated (one-shot) trials, as in the present
experiment, there is no clear objective correlate
of this constant. The simple proportionality
predicted by Equation 9 would hold for any
pair of corresponding functions—linear, ex-
ponential or whatever—as well as hyperbolic.
Strictly speaking, Experiment II tests whether
odds against and delay are functionally anal-
ogous but not, as in Experiment I, what the
function is. Note, however, that the linearity
predicted by Equation 9 is between delay and
odds against and not between delay and prob-
ability.

The significance of Equation 9 is not that
it provides either a probability or a delay dis-
count function. However, once either function
is known, Equation 9 predicts the form of the
other. The relationship is complex between
delay and probability but is quite simple be-
tween delay and odds against. Thus, consid-
ered in terms of analogy to delay, odds against
may be said to have a degree of behavioral
meaningfulness not shared by probability.

It might be inferred from the present results
that, for deciding among probabilistic out-
comes, probabilities are better stated as odds
against than as fractions. To test whether it is
easier to judge the value of odds ratios than
probabilistic rewards, we attempted to repeat
Experiment II with stated odds against rather
than stated probabilities. The subjects, again
Stony Brook undergraduates not experienced
in gambling, did not respond consistently; they
could not understand the meaning of an odds
ratio (e.g., “The odds are 3:1 againstyou. . .”)
well enough to judge delay of reward unless
the odds ratio was accompanied by an equiv-
alent probability (... which means that in
four trials, you would win one time”). Ex-
perienced gamblers would undoubtedly have
a better understanding of odds. However, it is
unlikely that our subjects translated probabil-
ities into odds against when they could un-
derstand the latter only in terms of the former.

It is therefore necessary to distinguish be-
tween the meaningfulness of a variable as it
affects choice behavior and as it affects verbal
understanding. Kahneman and Tversky (1979)
make a corresponding distinction between
“subjective probability”” and “decision weight.”
Subjective probability represents human sub-
jects’ psychophysical judgment of verbally
stated probability, but this judgment does not
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correspond to probability as it affects subjects’
decisions between probabilistic alternatives.
The relationship proposed by Kahneman and
Tversky to apply between stated probability
and decision weight corresponds over most of
its range to that between probability and odds
against.

GENERAL DISCUSSION

The generality of these results is limited.
First, the experiments reported here used only
one standard undiscounted value ($1,000) and
therefore cannot account for interactions be-
tween amount of reward and degree of dis-
counting. Second, the subjects’ task in the pres-
ent experiments was always to choose between
alternatives rather than (as is more typical in
studies of human discounting) to evaluate or
judge a given alternative; value as measured
by judgment procedures may differ signifi-
cantly from value as measured by choice pro-
cedures (Bostic, Herrnstein, & Luce, in press).
Third, the probabilities in the present exper-
iments were stated as “one-shot” rather than
repeated gambles. Keren and Wagenaar (1985)
found significantly less underestimation of
probability with choices among repeated gam-
bles than with choices among one-shot prob-
abilities. Generally, small differences in the
framing or context of instruction may have
large effects on human choice (Kahneman &
Tversky, 1979; Mischel et al., 1989; Silberberg
et al., 1988). Furthermore, the present exper-
iments varied stated probability and delay sep-
arately. A single reward was either probabi-
listic or delayed but not both. Future
experiments are necessary to study framing
effects and combinatorial effects in both ani-
mal and human choice.

Nevertheless, several regularities emerged
within the context of the present procedure.
In Experiment I, the hyperbolic delay discount
function found by Mazur (1987) to describe
the behavior of food-deprived pigeon subjects
choosing between delayed food rewards of dif-
ferent amounts also described the behavior of
human subjects choosing between delayed and
immediate hypothetical monetary rewards of
different amounts. Furthermore, with a trans-
formation of probability to equivalent waiting
time (odds against), the same discount function
described the behavior of human subjects
choosing between probabilistic and certain hy-
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pothetical monetary rewards of different
amounts. Experiment II showed that human
subjects could directly translate between prob-
ability and equivalent delay of a monetary re-
ward of fixed amount.

These results confirm previous findings by
Benzion et al. (1989), Mischel and Grusec
(1967), Rachlin et al. (1986), and Stevenson
(1986) that probability and delay discounting
affect human behavior in corresponding ways.
The present results suggest further that the
specific form of the delay discount function for
humans is the same as that of pigeons and that
the form of the human probability discount
function is derivable from that of the delay
discount function. The (hyperbolic) shape of
this function accounts for preference reversals
between delayed rewards and has been used
to describe pigeon self-control (or the lack of
it) and commitment (Rachlin & Green, 1972).
The present experiment lends some support to
the extension of such considerations to human
self-control and commitment (Logue, 1988).
The same hyperbolic shape, in the form of
waiting times equivalent to stated probabili-
ties, has been shown to explain corresponding
reversals of human decisions among probabi-
listic rewards (Rachlin et al., 1986).
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